
ATHLETE’s Feet: Multi-Resolution Planning for a Hexapod Robot
Tristan B. Smith Javier Barreiro Daniel Chavez-Clemente
David E. Smith Vytas SunSpiral

Intelligent Systems Division Department of Aeronautics and Astronautics
NASA Ames Research Center Stanford University
Moffett Field, CA 94035–1000 Stanford, CA 94305–4035
{Tristan.B.Smith, Javier.Barreiro, dchavez@stanford.edu

David.Smith, Vytas.SunSpiral}@nasa.gov

Abstract

ATHLETE is a large six-legged tele-operated robot. Each
foot is a wheel; travel can be achieved by walking, rolling, or
some combination of the two. Operators control ATHLETE
by selecting parameterized commands from a command dic-
tionary. While rolling can be done efficiently with a single
command, any motion involving steps is cumbersome - walk-
ing a few meters through difficult terrain can take hours. Our
goal is to improve operator efficiency by automatically gen-
erating sequences of motion commands. There is increasing
uncertainty regarding ATHLETE’s actual configuration over
time and decreasing quality of terrain data farther away from
the current position. This, combined with the complexity that
results from 36 degrees of kinematic freedom, led to an ar-
chitecture that interleaves planning and execution at multiple
levels, ranging from traditional configuration space motion
planning algorithms for immediate moves to higher level task
and path planning algorithms for overall travel. The modular-
ity of the architecture also simplifies the development process
and allows the operator to interact with and control the sys-
tem at varying levels of autonomy depending on terrain and
need.

Introduction
ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Ex-
plorer) is a large six-legged robot developed at the Jet
Propulsion Laboratory (see Figure 1). ATHLETE is a flexi-
ble platform designed to serve multiple roles during manned
and unmanned missions to the moon, including transporta-
tion, construction and exploration. It is intended to be re-
motely operated from earth or by astronauts on the moon.

In the two years since prototype ATHLETE (1/2 scale)
robots became operational, a wide array of capabilities
have been demonstrated (Wilcox et al. 2007; Heverly and
Matthews 2008). ATHLETE can roll on smooth terrain,
combine walking with rolling to traverse uneven terrain and
even climb ledges. It can manipulate tools, rappel down a
steep slope, and coordinate with other robots. All of these
involve sequences of commands selected by human opera-
tors with limited software aid. Rolling can be commanded
efficiently because a single command can direct the robot
to travel long distances. If commanded, active compliance

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: ATHLETE on a hillside.

can be enforced when rolling; this means the robot will keep
its chassis level and wheels coordinated while rolling over
uneven ground. However, when stepping is involved, active
compliance of the robot’s posture is not currently available,1
making operation tedious.

The goal of this project is to make ATHLETE operation
faster and more efficient by automatically generating se-
quences of commands. These sequences are especially im-
portant in situations that require walking, but even those sit-
uations must incorporate rolling from the outset. As an ex-
ample, the most efficient way to start climbing onto a ledge
is to lift up the front leg, roll forward, and put the foot down
on the other side.

Often, motion planning for such robots has been done
with configuration space planning. Configuration space is
the set of all possible robot configurations (each determined
by a unique set of joint angles), and a path through that space
represents a sequence of moves the robot can make to get
from one configuration to the next.

Configuration space planning for ATHLETE was imple-
mented by Hauser, Bretl, and Latombe (2006) but ran into
various difficulties due to the size and complexity of ATH-
LETE’s configuration space. First, search was slow; moving
one body length on irregular ground took 26 minutes to com-
pute. Second, a complete and accurate model of the environ-
ment was assumed, but is not available in practice. Finally,
rolling was not included but is expected to be a significant

1Active compliance for walking is significantly more difficult
to implement. For example, how should weight be redistributed
when a leg is picked up?



part of an appropriate plan for almost any terrain.
The realities of ATHLETE’s operational environment

suggest that configuration space planning is much too de-
tailed for anything beyond immediate moves. The quality of
terrain knowledge degrades quickly over distance; due to its
imprecision, stereo reconstruction is restricted to the nearest
10 meters or so (see Figure 2) and even that data is less ac-
curate as distance increases. Planning beyond that distance
requires lower resolution (e.g. satellite) imagery. Uncer-
tainty regarding future configurations also increases quickly
as terrain inaccuracies combine with the inability to accu-
rately model the way that ATHLETE’s joints often sag or
shift under pressure. Even worse, any command to roll with
active compliance will lead to an entirely unpredictable con-
figuration.

Figure 2: Stereo reconstruction of terrain using ATHLETE’s
onboard cameras. Note the blindspots outside of each leg.

For these reasons, we have chosen to break down the plan-
ning problem into multiple layers, each operating at a differ-
ent level of granularity and over a different horizon.

Consider moving ATHLETE from a lunar landing site to
base camp, hundreds of meters or even kilometers away. At
the highest level, a route planner will use low-resolution data
to determine a rough route to base camp (Figure 3). This
planner prefers smooth terrain, avoids impassable terrain,
and might incorporate other high level goals, such as min-
imizing distance or energy, or including desired waypoints
for scientific observation or mapping.

Subsequent planning layers take over planning within the
range of ATHLETE’s onboard cameras (the dotted circle in
Figure 3). Given a desired direction of travel and the camera
data, a chassis planner determines a path for the chassis from
the current position to the edge of the field of view in the de-
sired direction (Figure 4). This path travels between, over,
and around obstacles and elevation changes, so that rolling
is likely to work and walking, if necessary, is likely to be
straightforward. For example, on flat terrain littered with
small boulders, this planner might find a path where com-

Figure 3: A route plan at the highest level will extend well
beyond the range of ATHLETE’s cameras.

binations of zig-zags and chassis rotations allow ATHLETE
to get across the terrain simply by rolling and occasionally
picking up feet.

Figure 4: The chassis planner combines rotations and trans-
lations to meet the route plan at the horizon.

At the next level of granularity, a move planner will search
for combinations of rolls, steps, and chassis shifts that move
forward along the given chassis plan while maintaining sta-
bility. For example, if the next move should be a step, the
move planner must decide which leg to use, and where to
step, based on stereo analysis of the terrain.

Finally, at the lowest level, traditional configuration space
planning will be used to determine sequences of joint manip-
ulations that achieve each specific step while avoiding colli-
sions (with itself and the terrain) and obeying torque limits.

Interestingly, the multiple levels of planning parallel the
multiple granularities of execution available. High level
commands (rotations, rolls and chassis shifts) are deter-
mined by the chassis and move planners while the low-level
commands required for stepping are determined by the con-
figuration space planner.

Note the similarities with how we humans travel. Imag-
ine hiking up a rocky mountainside. At a high level, you
scan the horizon for a goal destination and plan some zig-
zags to get there. You then head off in the initial direction,
searching for a path with minimal ups and downs. Along
that path, you select specific stable places to put your feet.
Meanwhile, your low-level body controls figure out how to
get each foot to the desired locations. Occasionally, you look
up and replan based on new information, or because you get



stuck. This analogy suggests that our approach is reason-
able and also that the resulting plans are most likely to be
understandable and acceptable to human operators.

Even though the proposed planners will initially only sug-
gest commands to an operator, they will be tightly integrated
with each other and with execution. Any planner could be
required to replan if either 1) the goals in its current plan
cannot be achieved by a lower-level planner, 2) execution
has resulted in a state that conflicts with its current plan or
3) the user modifies goals in the current plan.

Our proposed architecture combines algorithms familiar
to the robotics community with those more familiar to an AI
audience. Low level kinematics and physical constraints can
be abstracted away from planning algorithms used for the
higher levels. Design is also driven by the need for incre-
mental progress. The low-level planner is already available
and can be used by operators while higher level planners are
under development.

The next section describes how ATHLETE is operated to-
day. We then overview our architecture before describing
each level of planning in more detail. Finally, we mention
related work, and discuss possible future extensions.

ATHLETE Today
ATHLETE has six legs attached to a hexagonal chassis and
is omni-directional. Each of ATHLETE’s six legs has hip,
knee, and ankle joints (each with 2 degrees of freedom), re-
sulting in 36 degrees of kinematic freedom.2 At the end of
each leg is a multi-purpose wheel. The wheel can be locked
to serve as a foot or unlocked to roll; it can also be used to
operate tools using a mechanical adaptor.

ATHLETE’s design includes 15 pairs of stereo cameras;
one pair on each side of the hexagon, one at the end of each
foot (primarily for tool operation) and 3 pairs on the inside of
the hexagon to view the terrain between and around the feet.
Together, these cameras cover most of the terrain within a
few body-lengths although some blind spots (see Figure 2)
exist around the legs. Other sensors monitor forces and joint
torques.

Modus Operandi
Operators use laptops to send parameterized commands to
ATHLETE. While the command dictionary is sizeable, hu-
man operators almost exclusively use a small handful. The
most common mobility commands include stepping, rolling
and shifting the chassis to rebalance. The roll command al-
lows active compliance; joints are adjusted to keep the chas-
sis centered and level while the individual wheels roll up and
down over uneven terrain. Therefore the roll command can
be used to travel large distances. However, other commands
invoke much smaller moves, often changing the location of
a body part by tens of centimeters or less.

Intuitively, walking with ATHLETE is a matter of choos-
ing the order in which to step the feet. Experience com-
manding ATHLETE quickly makes it clear that it is much

2These are not all independent in practice due to closed chains
through the terrain.

more about maintaining balance (keeping the center of grav-
ity within the feet placements) and weight distribution.
Therefore, much of the challenge with walking is shifting
the chassis to appropriate locations between steps. There
are also interesting trade-offs between stability and mobility
— spreading ATHLETE’s legs out makes it more stable but
less able to move.

Architecture
Figure 5 shows the architecture overview of the proposed
system. It includes the following features:

• A human operator specifies goals to the planners and ap-
proves or modifies any commands before they are sent to
ATHLETE.

• There is one planner for each one of the layers outlined
above. The operator can interact with any of the planners.

• ATHLETE is issued commands and returns state updates
and new stereo images when requested.

Figure 5: Architecture overview.

Although the Configuration Space planner outputs plans
in the form of command sequences that could be directly
executed by ATHLETE, final authority about what ATH-
LETE does resides with a human operator, assisted by a
GUI-driven software controller. This allows the operator
to increase the number of operations to be performed au-
tonomously as the planning tools become more reliable. The
operator will remain in the loop for the foreseeable future
because of uncertainty at execution time and safety con-
cerns.

A nice consequence of the decomposition into multiple
planners is that the operator may interact with any of them
to set goals and obtain plan information at that level. For
instance, the operator could set waypoints for the route or
chassis planners, or ask the configuration space planner for
the configurations it is considering and choose one directly.
This will allow for a more gradual adoption of the technol-
ogy, compared to a black-box approach that can only take
high level goals and outputs command-level plans.

The system builds upon EUROPA (Extensible Universal
Remote Operations Planning Architecture),3 a planning and
scheduling library and toolset that has been applied to var-
ious NASA planning problems (Frank and Jonsson 2003)
including satellite observation scheduling and solar array

3https://babelfish.arc.nasa.gov/trac/europa



constraint management on the International Space Station
(Reddy et al. 2008). EUROPA provides a plan database
for plan representation that makes it easier to integrate the
different planners as will be explained shortly. EUROPA
also provides powerful modeling, constraint reasoning and
debugging tools, and an extensible architecture so that new
search strategies for the different planners can be plugged in
when needed.

A significant challenge with this architecture is to coor-
dinate the four planners effectively. We adopt a coordina-
tion architecture pioneered by IDEA (Finzi, Ingrand, and
Muscettola 2004), and further refined in T-REX (McGann
et al. 2008). From the coordination point of view, the dif-
ferent planners are equal peers, and communicate with each
other using a common EUROPA database. A planner can
post goals for another planner to refine, and can monitor
state variables to determine whether it needs to re-plan, ei-
ther because one of its posted goals failed to be satisfied,
or because the state of the world changed in a way that is
inconsistent with the current plan. This approach avoids
any special-purpose coordination logic in the planning code,
which would make the system more complex and potentially
brittle. Each planner’s model explicitly states when goals
are to be posted, and also what happens when re-planning
is triggered by a failed goal or a change in state variables.
To avoid non-terminating cycles, we only allow a planner to
post goals to, and to monitor state variables in, the lower-
level planner immediately below it (see Figure 5), so the
route planner can only post goals to and monitor the chassis
planner, which in turn can only post goals to and monitor the
move planner, and so on.

Figure 6 shows an example of the coordination.4 The
chassis planner contains a timeline to represent the posi-
tion and orientation of ATHLETE’s chassis over time. The
at states on that timeline are represented in the EUROPA
database as tokens (a EUROPA data structure that represents
both actions and states). These at states generate at pre-
requisites on the frame timeline in the move planner. The
move planner interprets these as goals; when they are posted
it attempts to generate a plan to achieve them. The resulting
at tokens for the frame will also impose constraints on to-
kens in the leg timelines; the move planner must determine
appropriate steps, rolls, and frame shifts that fill in those
timelines and satisfy all constraints.

This is how information is propagated from higher-level
planners to lower-level ones. In the opposite direction,
higher level planners monitor state changes in lower-level
ones. For instance, when a goal fails to be satisfied in the
move planner, that goal is removed from the frame time-
line (and disallowed in future plans) which in turn causes an
inconsistent state in the chassis timeline. Consequently, the
chassis planner will re-plan and either post new goals for the
move planner, or determine that its own goals are unachiev-
able and remove them, thereby propagating the inconsistent
state up to the path planner.

4More detailed presentations are available elsewhere (Finzi, In-
grand, and Muscettola 2004; McGann et al. 2008).

In a similar fashion, new telemetry coming in from ATH-
LETE is incorporated in the form of tokens on timelines
owned by the configuration space planner (the lowest level
planner), this new information may cause inconsistencies
which will then trigger re-planning. To avoid read-write
conflicts all accesses to the EUROPA database are serialized
as described by McGann et al. (2008).

Figure 6: Example of planner coordination.

As we have seen, there are two ways to initiate a planning
cycle:

• By posting goals to a planner, which may result in re-
planning by the planner that owns the affected timeline
and in derived sub-goals for lower level planners.

• By changing the state of a timeline, which may trigger
re-planning in the planner that owns the timeline and po-
tentially in higher level planners as well.

Re-planning is expected to happen often. Terrain data will
be updated whenever the chassis is shifted and ATHLETE
will quickly drift away from the exact location and config-
uration modeled in the plan, especially when rolling with
active compliance. While ATHLETE’s actual position after
a move will almost always differ from the planned position,
re-planning is only required when the planned position of the
subsequent move can no longer be achieved, as determined
by the configuration space planner.

Finally, during execution we expect ATHLETE to fail on
some commands deemed acceptable by all planners. This
could be a result of terrain that wasn’t accurately modeled,
or torque on some joint that exceeds safety limits. In these
cases, the failure can be blamed on the current low-level
command issued by the configuration space planner, and,
in a similar fashion to the previous cases, the feedback loop
coming from ATHLETE will update a state variable to cause
an inconsistent state and trigger re-planning, which might
propagate all the way up to the route planner.

We now consider each of the four planners in more detail.

Route Planner
The goal of the high level route planner is to determine a rea-
sonable 2D route through the terrain based on low resolution
terrain data.



Usually, route planning simply minimizes distance trav-
eled based on binary terrain data; points in the terrain are
passable or not. For ATHLETE, however, there is a wide
range of passable terrain. A route across flat terrain is much
preferable to a route up and over a rocky hillside for many
reasons (it is safer, faster to plan for, and much faster to ex-
ecute), even though both are doable.

The route planner divides the terrain into a grid. Each
square is roughly the size of ATHLETE and is assigned a
cost that corresponds to the expected time to cross it, where
squares likely to require difficult stepping are an order of
magnitude more expensive than squares that require little or
no stepping. The route planner then uses A* search where
the heuristic is the Euclidean distance to the goal square.5

We don’t expect this highest level plan to need much in-
teraction with the lower level planners. In very complex and
constrained terrain, the planner may have to settle on a route
that turns out to be impassable when higher resolution data
becomes available. However, because of ATHLETE’s high
mobility and the expected terrain it will face, we expect the
best-looking route to almost always be traversable.

This planner may be extended to include waypoints, or to
update the optimization criteria; for example, we might want
to optimize cumulative expected reward while secondarily
minimizing duration.

Chassis planner
The chassis planner can be considered the high-level planner
for the region within ATHLETE’s field of view. Given a
direction of travel determined by the high-level planner, the
chassis planner assumes ATHLETE’s nominal pose, which
strikes a balance between stability and mobility, and creates
a plan that combines translations and rotations of that fixed
configuration to reach the given edge of the field of view, as
shown in Figure 4.

The placement of the feet in ATHLETE’s nominal posi-
tion define six vertices of a hexagon. We want the easiest
way to get those six vertices across the terrain. For example,
consider a flat boulder-strewn area. Some boulders can be
avoided completely. By using appropriate rotations, other
boulders can pass between the feet without the need to step
over them. Finally, where stepping cannot be avoided, we
want to minimize the number of steps required. For exam-
ple, Figure 7 shows one approach to a boulder requires four
legs to step over it, while another orientation requires only
the front and back legs to step over the boulder, a much eas-
ier operation.

To minimize stepping, the goal is to minimize the number
of elevation changes that the six feet (in their fixed positions)
must pass over during the translations and rotations in the
plan. We again use A* search with Euclidean distance used
for the heuristic cost estimate.

The cost for a translation or rotation is the sum, over all
legs, of the distance traveled and total elevation change for
the leg. Notice that distance, and possibly elevation change,

5D* search was considered but A* is fast enough for this do-
main.

Figure 7: The chassis planner can minimize stepping by
considering only the orientation and position of the chassis
when approaching unavoidable boulders.

will be non-zero even for rotations. We add additional penal-
ties when:

• Adjacent feet have significant elevation changes at the
same time. It is difficult to pick up two adjacent feet si-
multaneously while maintaining stability.

• Feet move into undesirable terrain (steep or slippery).
These positions might be necessary, but are discouraged.

Finally, the algorithm must avoid large elevation changes
in a couple of ways. First, the terrain between the six ver-
tices must not be so high relative to those vertices that the
chassis cannot avoid it. Second, the elevation difference be-
tween any pair of feet cannot exceed a certain amount so that
all legs can simultaneously reach the ground.

Of the four planners, this is the one most likely to have
horizon difficulties because we are planning right to the edge
of the current field of view. However, we expect to replan
each time the chassis moves; therefore replanning will occur
well before the horizon is reached.

Move Planner
The move planner is tasked with choosing a short sequence
of the following moves that achieve the rotations and trans-
lations given by the chassis plan:
• Roll: Move the entire robot to a new position by lifting

legs as necessary to avoid obstacles and rolling all feet
still in contact with the ground.

• Step: Move a given foot to a new position on the terrain.
• Shift chassis: Move the chassis to a new position, leaving

the feet where they are.
There is a fourth move, rotation, that will be part of the

resulting sequence but is predetermined by the chassis plan.
Note that rolling could look very much like stepping. For

example, a single roll might include holding up leg 1 to
avoid a rock, rolling 1 meter, putting leg 1 down, lifting leg 2
to avoid a second rock, and rolling for another meter. How-
ever, we only consider lifting legs straight up and down and
can therefore easily determine the maximum rollable dis-
tance in a given direction without search as follows. As we



move forward, if progress of any leg is impeded, put down
any leg that won’t be impeded if it is on the ground, and see
if the impeded leg(s) can be lifted without losing stability.

Our search algorithm for this planner faces two decisions
at each step: whether to roll, step, or shift, and the desired
position. We first consider the latter.

For rolling, the desired position is simply the farthest po-
sition along the chassis plan which can be reached with
rolling. Now suppose we want to take a step with a given
foot and need to choose a new position. Figure 8 shows how
we narrow this down to a handful of possible choices. First,
given that the chassis is fixed in space, we have a region (R)
of positions that can be physically reached by the foot. We
only consider the subset (S) of those points that will result
in a stable stance, where the robot won’t tip over or exert
too much force on any joint.6 Within that subset, we fo-
cus on points that result in progress in the direction of the
chassis plan (D). Finally, a subset of those points (the Xs)
corresponds to acceptable terrain (not too steep or slippery)
and we prefer the position that gives us the most forward
progress.

Figure 8: For a given foot, R is all reachable points, S is
stable points, D is desirable points (forward progress) and
the Xs correspond to points that are acceptable terrain.

Similar to Figure 8, the chassis has regions of reachable,
stable, and desirable points. The only difference is that all
desirable points are acceptable because terrain is not a factor.

Now that we have a process to select the new position for
any given move, we must decide which move to make. Be-
cause rolling is fastest in practice, and is preferred by opera-
tors, we always roll if possible. When rolling is not possible,
we simply select the move (step or shift) that results in the
greatest progress along the chassis plan. Algorithm 1 shows
how we determine a prioritized stack of moves with favored
moves at the end (any roll gets first priority, followed by
moves in the order of the distance they can move).

Finally, we implement the move planner as a depth-first
chronological backtracking algorithm where Algorithm 1
provides the set of possible branches for each search node.
The set of possible moves returned by Algorithm 1 include at

6A stable stance is a function of the terrain and the positions of
the chassis and other legs.

Algorithm 1
function SELECT-GOOD-MOVES(current-position,
chassis-plan)

1: stack = {}
2: for all move in f1, f2, f3, f4, f5, f6, chassis do
3: X = {X’s from Figure 8}
4: for all (i = 0, i < p, i + +) do
5: select x ∈ X which is closest to the goal
6: delta =distance from current position to x
7: stack.push back(move, delta)
8: remove x from X
9: end for

10: end for
11: sort stack with lowest delta at the front
12: dr ← max rollable distance along chassis-plan
13: if dr > 0 then
14: stack.push back(roll, dr)
15: end if
16: return stack

most a single roll and p positions for each foot or the chassis,
resulting in a branching factor of 7p + 1. To limit the search
space, we consider only a small subset of the 7p prioritized
moves, and expect to plan for no more than 10 moves at
once. Therefore, we expect the algorithm to be instanta-
neous in most terrain, and to complete within a handful of
seconds in difficult terrain where the going will be slow re-
gardless due to operator precautions.

We have not described how the regions of Figure 8 are ac-
tually computed. These require an understanding of both ob-
stacles and the physical constraints and kinematics of ATH-
LETE. Fortunately, however, the required calculations are
already performed by the low-level configuration planner
described in the next section, and are fast to compute, so
we can rely on calls to those low level libraries.

The move planner takes full advantage of EUROPA’s
modeling language, constraint engine, and search tools. We
discretize the actions ATHLETE can take, but not the action
parameters (where to step to, for example), as the custom
algorithm can handle continuous state space.

Configuration Space Planner
While we can directly execute rotation, chassis shift, and
roll moves produced by the move planner, the configuration
space planner is required to refine step moves. Those require
a set of trajectories for each joint that ensures that over-
all motion of the robot avoids collisions, singularities, and
joint limits. The kinematic chains of ATHLETE’s legs cre-
ate strong interdependence between the joints with respect
to overall position.

The core difficulty is the need to plan in two different
spaces at once: task space and configuration space. Task
space refers to the normal world we are used to operating
in, and within which our goals, terrain, and obstacles are de-
fined. Defining motion plans for the end point of a leg in
task space makes it easy to avoid collisions, but may result
in paths that are unreachable at some points, or which get



too close to a singularity. A singularity is a location where,
due to the particular alignment of the joints, near-infinite ve-
locities may be required to move the end point in certain
directions (e.g. the knee suddenly flips around by 180). Fi-
nally, while the path of the end point may be collision free,
one must ensure that all the segments of the leg avoid colli-
sion.

To deal with many of these problems, one needs to also
plan in configuration space, where each dimension repre-
sents the range of motion of one of the joints of the robot.
Paths through this space represent feasible motion of the en-
tire robot. Unfortunately, it is difficult to translate the terrain
and other obstacles into this space efficiently – especially
if the terrain data is being collected in real time by sensors
(such as cameras). Thus, a common approach is to use a
sample planner where a set of paths are defined in configu-
ration space, often through a random process, and then sam-
ples along those paths are checked for collisions. Collision
checking is done by taking the joint values at a point along
the trajectory and applying them to a model of the robot
which can than be evaluated for task space collisions with
the environment or itself. Paths through configuration space
are generated and tested until a route to the goal is achieved.

Configuration space planning for ATHLETE is computa-
tionally expensive yet must be tightly interleaved with exe-
cution. This is achievable because 1) we only plan for spe-
cific moves, thereby requiring only a subset of the 36 di-
mensional space and 2) the uncertainty (at this level of res-
olution) of future states means there is little reason to make
plans beyond a few steps.

Related Work
There are many applications where it has been useful to
break planning into multiple levels. In fact, it could be ar-
gued that most robotics is really done this way, with low-
level controllers doing something intelligent while higher-
level pieces plan for the bigger picture. Our high-level route
planning has simplified away all of ATHLETE’s joints and
instead classifies terrain traversability based on character-
istics of the terrain itself. This approach was used in the
Morphin software (Singh et al. 2000) to find paths for plan-
etary rovers through natural terrain. We also currently use
a derivative of that software in our stand-alone single foot-
fall planning system. An extension to Morphin created at
JPL called GESTALT (Goldberg, Maimone, and Matthies
2002) is currently being used by the MER rovers on Mars
as a means to plan local traversability (Maimone, Leger, and
Biesiadecki 2007).

The control and planning for legged walking robots is an
extremely active field where research can be grouped into
two categories: dynamically controlled robots, and stati-
cally stable robots. The majority of current research efforts
are focused on dynamically controlled robots (for example,
Campbell and Buehler (2003) and Kimura, Fukuoka, and
Cohen (2007)). This approach, which uses closed loop con-
trollers to dynamically react to experienced forces and po-
sitions, has lead to the success of well-known robots such
as BigDog (Playter, Buehler, and Raibert 2006) which is ca-
pable of recovering its balance after slipping on ice. Imple-

menting such a controller requires modeling the dynamics
of individual motors and power systems, etc. (Poulakakis,
Smith, and Buehler 2005).

Unfortunately, dynamic control of a robot results in an
inability to predict the results of motion commands on the
robot, as it will reactively respond to the environment. This
is generally unacceptable for planetary robotics where the
expense of the missions, the inability to rescue the robot,
and the intermittent communications require motion plans to
be executed with precision and the final state of the robot to
be predictable. Thus ATHLETE is designed as a statically
stable walking robot (Kar 2003). Many such robots exist,
the most famous of which is probably Dante II (Wettergreen
1995), which descended into the mouth of an active volcano.

Statically stable walking robots require explicit planning
for leg positions. Most statically stable robots implemented
in the past have been much simpler mechanisms, usually
having three or four degrees of freedom per leg. ATHLETE,
with its 36 degrees of freedom, is challenging to plan for,
and requires the use of advanced motion planning algorithms
such as Sample Based Planners (Lavalle 2006).

Future Work
Implementation of the proposed system is not complete.
The configuration space planner has been implemented and
tested with ATHLETE by operators. Preliminary versions
of the move and route planners have been implemented and
tested on simulated data. The chassis planner has not been
implemented yet, and the planners run separately and have
not yet been combined into the described hierarchical sys-
tem.

In additional to facilitating initial development, the pro-
posed architecture is intended to make future extensions
simple and make it easy to experiment with different algo-
rithms and heuristics at each level. For example, route plan-
ning could easily incorporate other goals (e.g. science or
mapping goals) as has been done for other rover projects.
Also, we may want to optimize plans for various metrics
(e.g. energy, duration, or minimal number of commands).
Or, we might want to experiment with machine-learning ap-
proaches for the move planner, or add specific pre-defined
gaits for crossing benign terrain (sandy terrain that is flat but
requires stepping, for example).

As soon as users are prepared to allow some automation,
tight integration of control and execution will be crucial,
both because of the high-level of uncertainty regarding the
terrain, and because ATHLETE often gets into unexpected
configuration space singularities. We believe that combin-
ing the four planners will make replanning quick and easy.

In practice, ATHLETE also regularly hits configurations
where the motors are unwilling to execute a seemingly rea-
sonable command. Usually, this situation is due to force sen-
sors drifting over time and can be solved with a command
that picks up and puts down each leg in turn to recalibrate
the sensors. We expect to incorporate this recalibration as
an option when replanning due to a failed command.

There are also blindspots due to occlusions from rocks
and the legs themselves. In difficult terrain, it may be impor-
tant to fill in some blindspot information with terrain data



before proceeding. In extreme cases, a plan could involve
raising a leg high above the ground to get images of un-
known terrain from the foot cameras.

Finally, we may want to incorporate image taking actions
into the plans. It takes time to acquire and process new im-
ages, and the planners could help optimize how often images
are taken and how much of the field of view is included.

Conclusion
We have described a way to combine four different planners,
each operating at a different level of granularity, to automate
the mobility of the six-legged ATHLETE robots. First, the
route planner uses low-resolution terrain data to produce a
rough route to a distant goal. Then, within ATHLETE’s field
of view, the chassis planner refines that plan in an attempt to
maximize rolling and simplify stepping. This plan is further
refined by a move planner into a sequence of steps, rolls,
and chassis shifts. Finally, a low level configuration planner
fills in the details of the steps based on the kinematics of
ATHLETE.

Another way to think about the different levels is with re-
spect to the model of ATHLETE used. The route planner
models ATHLETE as a single point. The chassis and move
planners model it as 7 points (6 feet and the chassis); for the
chassis planner, the positions of the 7 points are fixed rela-
tive to one another while they can each move independently
in the move planner. Finally, the configuration space planner
models all 36 degrees of kinematic freedom but only has to
solve problems involving a subset of configurations space.

In our architecture, different plan components are deter-
mined by different planners; the chassis planner chooses ro-
tations, the move planner adds rolls and chassis shifts, and
the configuration space planner figures out a sequence of
commands to achieve each step. This approach allows the
planners to nicely mirror the multiple granularities of exe-
cution available on the robot.

Using multiple levels, which combine various algorithms
from both the AI and robotics communities, has several
other advantages. First, it nicely handles the fact that 1) ter-
rain knowledge decreases quickly with distance and 2) un-
certainty regarding ATHLETE’s exact location and configu-
ration increases quickly after the first few moves in a plan.
Second, using more abstract models to solve the longer hori-
zon problems means that all planners can be expected to be
fast, simplifying the ability to replan. Finally, from a practi-
cal standpoint, it allows the various planners to be developed
simultaneously but separately while knowledge about kine-
matics and physics is not needed in the three higher level
planners.

Recall that ATHLETE is currently operated manually us-
ing its command dictionary. The goal of this project is to
speed up that process by suggesting commands to the user.
We expect the adoption of automation to be an incremental
process. However, even when only the lowest level com-
mands are fully automated, having the multiple levels of
planning available is important both so that the next few sug-
gested commands lead towards a reasonable solution, and
so that the operator can see why those particular commands
were chosen.

Acknowledgements
We thank Jeremy Frank and all our reviewers for their comments.
We are grateful for David Mittman’s time and assistance with ATH-
LETE in the JPL Mars Yard. This work was funded by the NASA
Exploration Technology Development Program.

References
Campbell, D., and Buehler, M. 2003. Preliminary bounding ex-
periments in a dynamic hexapod. In Siciliano, B., and Dario, P.,
eds., Experimental Robotics VIII. Springer-Verlag. 612–621.
Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Model-based ex-
ecutive control through reactive planning for autonomous rovers.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.
Frank, J., and Jonsson, A. 2003. Constraint-based attributes and
interval planning. J. Constraints 8.
Goldberg, S.; Maimone, M.; and Matthies, L. 2002. Stereo vision
and rover navigation software for planetary exploration. In IEEE
Aerospace Conference, volume 5.
Hauser, K.; Bretl, T.; and Latombe, J.-C. 2006. Motion plan-
ning for a six-legged lunar robot. In Workshop on the Algorithmic
Foundations of Robotics.
Heverly, M., and Matthews, J. 2008. A wheel-on-limb rover for
lunar operation. In Proc. of the Ninth Intl. Symp. on AI, Robotics,
and Automation in Space (iSAIRAS-08).
Kar, D. 2003. Design of statically stable walking robot: A review.
Journal of Robotic Systems 20(11):671–686.
Kimura, H.; Fukuoka, Y.; and Cohen, A. H. 2007. Adaptive
dynamic walking of a quadruped robot on natural ground based
on biological concepts. Int. J. Rob. Res. 26(5):475–490.
Lavalle, S. 2006. Sampling-Based Motion Planning. Cambridge
University Press.
Maimone, M.; Leger, C.; and Biesiadecki, J. 2007. Overview of
the mars exploration rovers’ autonomous mobility and vision ca-
pabilities. In IEEE Int. Conf. on Robotics and Automation Space
Robotics Workshop.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.; and
McEwen, R. 2008. A deliberative architecture for AUV control.
In Int. Conf. on Robotics and Automation (to appear).
Playter, R.; Buehler, M.; and Raibert, M. 2006. Bigdog. In SPIE
Defense and Security Symposium, Unmanned Systems Technol-
ogy.
Poulakakis, J.; Smith, A.; and Buehler, M. 2005. Modeling and
experiments of untethered quadrupedal running with a bounding
gait: The scout II robot. 24(4):239–256.
Reddy, S. Y.; Iatauro, M. J.; Kurklu, E.; Boyce, M. E.; Frank,
J. D.; and K.Jnsson, A. 2008. Planning and monitoring solar
array operations on the ISS. (under review).
Singh, S.; Simmons, R.; Smith, T.; Stentz, A.; Verma, V.; Yahja,
A.; and Schwehr, K. 2000. Recent progress in local and global
traversability for planetary rovers. In IEEE International Confer-
ence on Robotics and Automation.
Wettergreen, D. 1995. Robotic Walking on Natural Terrain: Gait
planning and behavior-based control for statically-stable walking
robots. Ph.D. Dissertation, Carnegie Mellon University.
Wilcox, B. H.; Litwin, T.; Biesiadecki, J.; Matthews, J.; Hev-
erly, M.; Morrison, J.; Townsend, J.; Ahmad, N.; Sirota, A.; and
Cooper, B. 2007. ATHLETE: A cargo handling and manipulation
robot for the moon. Journal of Field Robotics 24(5):421–434.


